Equations:

Energy and Momentum of a single photon:

$$E=hf=rac{hc}{\lambda} \hspace{1cm} p=rac{h}{\lambda}$$

Maximum energy of electron ejected from a photon hitting metal: (Photoelectric Effect)

$$E_{electron} = rac{hc}{\lambda} - W$$

where W is the work function.

Wavelength of any particle:

$$\lambda = \frac{h}{p}$$

Energy levels and orbital radii for Atoms with one electron:

$$E_n = -13.6 \cdot \frac{Z^2}{n^2} ({\rm eV})$$
 $r_n = 5.29 \times 10^{-11} \frac{n^2}{Z} \ ({\rm meters})$

Photon energies for transitions in Hydrogen:

$$E_{\gamma}=13.6\cdot\left(rac{1}{n^2}-rac{1}{m^2}
ight) \; (\mathrm{eV})$$

Initial/final electronic states are n/m. Series: Lyman(n=1), Balmer(n=2), Paschen(n=3).

Multi-electron Atomic Configurations:

Orbital Quantum No.	Letter
0	S
1	P
2	d
3	f
4	g
5	h

Notation: $3d^7$ refers to seven electrons in the n=3 l=2 shell. e.g. Cl (17 electrons) $1s^22s^22p^63s^23p^5$.

Rules for filling shells

- 1. No two electrons can have the same quantum numbers. (Pauli Exclusion Principle)
- 2. The orbital quanum number ℓ is always less than n.
- 3. For any n, ℓ there are $(2\ell+1)$ values of m_{ℓ} , $(-\ell \le m_{\ell} \le \ell)$.
- 4. For any n, ℓ, m_{ℓ} , there are 2 values of $m_s = \pm \frac{1}{2}$.
- 5. No more than $2 \cdot (2\ell + 1)$ electrons are in any n, ℓ shell.

Assorted Facts:

- 1. X-rays are high energy photons caused by transitions to the low-lying transitions in heavy atoms, and are measured in keV.
- 2. Fermions are particles that obey the Pauli exclusion principle.
- 3. Particles which are bosons can multiply occupy the same energy level.
- 4. Even numbers of fermions act like bosons.
- 5. Examples of bosons: photons, He⁴ atoms, gluons, · · ·